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Unified kinematics of bradyons and tachyons in 
six-dimensional space-time 
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J Stefan Institute, E Kardelj University of Ljubljana, Ljubljana, Yugoslavia 

Received 22 July 1980, in final form 3 April 1981 

Abstract. An explicit form of the transformation matrix in six-dimensional space-time M s  
is given both for subluminal and superluminal cases. Contraction into four dimensions 
provides the usual equations. Though a superluminal transformation in six dimensions is 
either real or complex, it must be necessarily complex when contracted into four dimensions 
if one considers the Minkowski subspace M4 as being the same for a subluminal and for a 
superluminal observer. The coordinates which become imaginary under the transformation 
reflect the fact that the events observable to one observer are not observable to the other. If 
there were only four dimensions in the world this would be difficult to understand. On the 
other hand, in six dimensions we can say that M4 is a subspace of events which are 
observable to a given observer. Another observer, moving faster than light, then doesn’t 
observe the same subspace of events, but some other subspace M i .  The cross section 
M i  n M4 is observable to both observers. In the second part of the paper it is shown how we 
can use a single formalism for both bradyons and tachyons. 

1. Introduction 

Recently, we have been faced with an increasing interest in the investigation of special 
relativity in three-dimensional space and three-dimensional time (Dorling 1970, 
Demers 1975, Kalitzin 1975, Mignani and Recami 1976, Pappas 1978, Cole 1977, 
1978, 1980). The introduction of three-dimensional time is appealing, since it restores 
the symmetry between space and time. Such a symmetry is especially useful when 
studying possible extensions of the Lorentz transformations to frames and objects 
moving faster than light (Recami and Mignani 1974 and references therein). Until 
recently the issues were controversial. The situation has been clarified by Cole (1980), 
who correctly understood the essence of six-dimensional transformations and their 
contraction into the usual four-dimensional transformations. Here I develop and 
systematise his work further, and write down an explicit form of the transformation 
matrix. I start from certain general principles concerning the distinction between 
subluminal and superluminal objects (bradyons and tachyons) and I show that both 
bradyons and tachyons can be treated on the unified footing. The essence is the 
introduction of a new degree of freedom, scale, by which a tachyon distinguishes itself 
from a bradyon. The transformation which maps a bradyon at rest to a tachyon with 
infinite speed is a suitable dilatation. A general superluminal transformation is the 
product of the dilatation and a subluminal transformation with properly chosen 
parameters. Within the proposed formalism we do not need to write separate equations 
for bradyons and tachyons. Both types of particles and corresponding transformations 
obey the same unified equations. 
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2. Three-dimensional space and three-dimensional time 

The necessity of time being more than one dimensional has been discussed elsewhere 
(PavSiE 1981). Here I shall just assume that events form a six-dimensional pseudo- 
Euclidean non-compact continuum M6 which is the direct sum 

Mg= T3OE3 (2.1) 

of three-dimensional Euclidean time T3 and three-dimensional Euclidean space E3. 
Let the metric of M6 have the signature (+++- - -). 

I shall also assume that by our immediate perception, in the absence oftachyons, we 
are not aware of the three dimensionality of time. An observer perceives the time as 
being one dimensional and the space as three dimensional. Both together they form the 
four-dimensional pseudo-Euclidean non-compact continuum M4 c M6 

M4 = Ti @E3 (2.2) 
with the metric (+- - -). The symbol T I  stands for the one-dimensional continuum of 
events along a chosen direction in the continuum T3.  

The physics on M4, when only bradyons are considered, is just the usual relativity. It 
will turn out that when tachyons are taken into account, the real Minkowski space M4 is 
not enough for a complete description. If we wish to avoid complex physical quantities, 
we must introduce the symmetric space-time. Moreover, the three dimensionality of 
time becomes an observable reality. 

3. Subluminal and superluminal transformations 

When a reference frame S is specified, an event 9 in M6 is described by six coordinates 

X a = ( X ~ , X r ) = ( t r , X r ) = ( f , X )  (3.1) 
_ _ _  _ _ _  

where a = 1, 2, 3, 1, 2, 3; r = 1, 2, 3; r = 1, 2, 3; X' = t'. 

coordinates xa and xa + dx" is given by the quadratic form 
The square of the distance between two infinitesimally separated events with the 

dS2=gab d x " d x b = d x a d x , = d x i d x i + d x r d x , .  (3.2) 

In an inertial frame the metric tensor gab is 

where 1 is the three-dimensional unit matrix 

Then the quadratic form (3.2) can be written as 

(3.4) 

c = l  (3.5) 

(3.6) 

ds2 = dx' dxi - dx ' dx' G dt2 - dX2 

where d t2= (drI2 =dt '  dt, = dt' dt' and dx2 /dx('= -dx' dx, = dx' dx'. 
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We distinguish three types of the quadratic forms (3.5): 

(9 ds2 := 0 null distance 

(ii) d s 2 > 0  time-like distance 

(iii) ds2 < 0 space-like distance. 

As in four-dimensional relativity, case (i) is also satisfied in six-dimensional rela- 
tivity by the events connected by the light signals. Let the speed of light be defined as 

c = (dx‘ dx‘)’”/(dt’ dtr)’’2=dx/dt. 

We use units in which c = 1. 
Case (ii) is assumed to be satisfied by the events along the world line of a bradyon. 
Case (iii) is assumed to be satisfied by the events along the world line of a tachyon. 
A transformation that preserves the sign of ds2 has been called a subluminal 

transformation (Parker 1969, Recami and Mignani 1974). An object 0, which appears 
as a bradyon B = 0 ( S )  in a frame S,  appears as a bradyon B’= O(S’) in another frame 
S’ ,  associated to S by a subluminal transformation. A transformation that changes the 
sign of ds2 has been called a superluminal transformation. An object 0, which appears 
as a bradyon B = 0 ( S )  in a frame S,  appears as a tachyon T = O(S*) in a frame S * ,  
associated to S by a superluminal transformation. 

4. Some explicit expressions of the transformations 

A general transformation which preserves ds2 in equation (3.5),  apart from the sign, has 
been discussed by Cole (1980). In general, a homogeneous transformation in six 
dimensions has 15 parameters. The motion of a particle may be specified by its 
six-velocity U ”  =dx”/ds = u ” / ( v ~ v , ) ” ~ ,  with U“ = (mr, vr)= (a, U), where m r = a  = 
dr/dt is a unit vector in three-dimensional time, and U = dx/dt is the velocity in 
three-dimensional space. Obviously V “ U ,  = m‘m, + vrv, = 1 - v 2  = (ds/dt)2. Let S and 
S’  be two frames with spatial origins given by the world lines 0 and 0’, respectively. 
Let, according to Cole, the motion of 0 be specified by (ao, 0) and (ab, U’) in S and S ’ ,  
respectively, and let the motion of 0’ be specified by (ao,, U )  and (a&, 0) in S and S‘  
respectively. If we exclude the spatial and time rotations, then there remain nine 
independent parameters, characterising a Lorentz transformation in M6. These 
parameters are given by cy0, ab, ao,, a&, U and U’, which quantities are not all 
independent, but related according to equations (2.4) and (2.5) of Cole’s (1980) paper. 
One relation can be immediately found by observing that the scalar product of the 
six-velocities U :  and U : ,  is invariant, apart from the sign ( k  = 1 for subluminal, k = -1 
for superluminal transformations) 

u : u ~ , ,  = k u r u & , a  (4.1) 
i.e. 

( ~ o ~ ~ o - ~ ~ ~ ~ ~ ) / [ ( l - ~ ~ ~ ) ( l - ~ ~ ) ] ’ ” =  k ( a & a b  - ~ b , ~ b ) / [ ( l - v $ - ) ( I  - ~ b ~ ) ] ” ~  
which reduces to 

CUO,CYOY = k a b , a & Y ’  for uo = U &  = 0 (4.2) 
where y = (1- v ~ ) - - ~ ” =  dtO8/dt& and y ’ =  (1-v’2)p1’2= dtb/dto with U = uos and U’= U;. 
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Let us assume that 

ao=a; and a()' = a b. (4.3) 

which reduces the number of independent parameters from nine to five. This assump- 
tion has its analogy in the usual four-dimensional Lorentz transformations where we 
assume that in the new frame the direction of velocity of 0' is the same as in the old 
frame (i.e. we exclude rotations of space axes). From equation (4.3) it follows that in the 
subluminal case y = y ' ,  that is / u I  = I u ' ~ .  The same result can be obtained also by 
assuming 

a0 = a o ,  and a; =ab.. (4.4) 

The first assumption (4.3) concerns only the way we orient the new axes r ' ,  without 
affecting the physical content, that is the orientation of the world line 0'. On the other 
hand, the assumption (4.4) restricts the world lines 0 and 0' to lie in a certain 
prescribed hypersurface M4 defined by the axes (ag, x). 

Let m E m' = a" be a time unit 3-vector of 0, and let n = nr  be a space unit 3-vector 
in the direction of U, satisfying m'm, = 1 and n'n, = -1, respectively. A transformation 
Lab which satisfies the condition (4.3) can be obtained by: 

(i) performing the spatial, R ( n ) ,  and the temporal, R(m), rotations which turn the 
axes t", x r  so that the new axis t'" lies along m, and xffl along n ;  

(ii) performing the subluminal boost in the (t '", x'") plane; 
(5) performing the spatial and temporal rotations which are inverse to the rotations 

The result is the subluminal transformation 
6). 

SF3 +Av2mimms yvvmhs  
-yuvnrms STs-Av2nrn ,  Lab(v) = ( (4.5) 

where y u  E y and A = y2/(1 + y ) .  Here U = uA < 1 is the velocity of a world line A, with 
aA = ao, lying in the hyperplane (ao, x). From condition (4.3), this velocity vA is the 
same as the velocity U of 0' which does not necessarily lie in this hyperplane, that is 
ao,#ao. This can be proved from the obvious relation yA =dtA/dta = 
dt,,a,,a,/(dtb.ab,ab) = yao.ao / (abab)  by taking into account equation (4.3). The 
transformation (4.5), therefore, does not hold only in the special case of a. = cyor, but 
also in the more general case of a. # aoj, provided the condition (4.3) is satisfied. The 
inverse transformation has the same form (4.5) with the replacement v -+-U. The 
matrix (4.5) satisfies the orthogonality condition 

L"b(v)L,"(u) = 6 b c  (4.6) 

and therefore preserves dsI2 = ds2. 
It is not difficult now to find the matrix i a b ( w ) ,  with w < 1, which satisfies 

L a b ( w ) i , c ( W j  = -sbc. (4.7) 

It is given by 

(4.8) 

where yw = (1 - w2)-1'2 and B = y i / ( l +  y w ) .  One can verify directly from equation 
(4.8) that f a b ( w )  changes the sign of the quadratic form, and is therefore a superluminal 
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transformation. The matrix (4.8) can be obtained from (4.5) by interchanging t" + xlr 
and x'' + t" in the relation dx'a = Lab(v)  dxb, so that 

W (4.9) 
1 --= - = u + v = & i  dx ,- =$I =@I dt d x - o  I -  = z l d f , = o  df -0  dx'=O U 

where the subscripts refer to the world lines along which in S' dx' = 0 and dt' = 0, 
respectively. 

Alternatively, the transformation which changes dst2 = -ds2 can be given by the 
complex matrix 

L*ab(ZI) = -iLab(u) u > l .  (4.10) 

If we orient the coordinate system so that m = (1,0,0), n = (1,0,0), and if the 
spatial origins of S and S' coincide at t' = 0 so that x; = x;, = 0, we obtain from equation 
(4.5) the subluminal boost in six dimensions (Cole 1977) 

from equation (4.8) the real superluminal boost (Cole 1977) 

t"= yw(x'- wt') =(UX1-t1)/(u2- 1)lI2 t'2 = x2 t'3 = x3 

x"= yw(t'- w x 1 ) = ( ~ t 1 - x ' ) / ( ~ 2 - 1 ) 1 ~ 2  x'2 = t 2  XI3 = t3 (4.8a) 

and from equation (4.10) the complex superluminal boost 

5. Contraction of the six-dimensional equations into the observable 
four-dimensional equations 

Now we must take into account the fact that our instruments and our brain, when only 
bradyons are present, do not register the three dimensionality of time, but only of space. 
In other words, from the six-dimensional equations we must obtain the usual four- 
dimensional subluminal equations. As pointed out by Cole (1980) this is achieved by 
imposing parallel time directions in each frame. I shall now elaborate this topic more 
explicitly. 

Let an event 9 be projected into the subspace T3 c M6. We obtain the point Y E  T3. 
The distance between the coordinate origin 0 and the point Y is equal to 
It( = (t't,)'/2. The differential of It1 is 

djtl = t' dtr/ltl = t dt/ltl = It1 ldtl COS Q/lt( = Idt( COS Q (5.1) 

where Q is the angle between the vectors t and dt. 
We shall assume that an observer and his instruments are such that he observes 

ldt( =dt, but not the components dt,, dt2, dt3 separately. The observable time is 
therefore {Idtl. Some authors (Mignani and Recami 1976) have assumed that the 
observable time is It/ = ( t :  + t: + t;)'/' but then some others have taken for the 
observable time interval d/tl of equation (5.1) instead of Idt( of equation (3.6). Such an 
assumption is true only for 'radial' displacement d t  (when cos Q = l ) ,  and when taken as 
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being general it leads to the non-invariance of the speed of light or to nonlinearity of the 
transformations, and several other troubles discussed in the literature, all of which we 
avoid by the assumption that the observable time interval is given by (3.6). 

In the case of a generic 6-vector p a  which transforms as 

(5.2) b p'" = L",p 

the observed quantities are 

P P  = ( P o ,  P ' )  /J = 0, 1, 2, 3 
- _ _  

( p i p i ) l / 2  F =  1, 2, 3 r = 1 , 2 , 3  

where p P  must transform as the usual 4-vector. The requirements are 

(5.3) 

(5.4) 

(5.5) 

Bearing in mind equation (5.2) we see that, in order to satisfy the requirements (5.4), 
(5.5), the 6-momentum (say!) p" and the transformation matrix Lab must satisfy the 
conditions 

( 5 . 6 ~ )  

(5.6b) 

( 5 . 6 ~ )  

~ ~ ~ ~ ~ " p ' p , , ,  = ~ ~ , p ~ ~ ~ ~ p ~ .  (5.6d) 

The conditions (5.6) imply also the fulfilment of the orthogonality relation 

By direct calculation we can find out that a generic 6-vector p a  and the trans- 
formation LUb given by equation (4.5) satisfies the conditions (5.6u), (5.6b) and (5.6d), 
provided that 

m r p F  = p o  (5.8) 

m ? , = m " p O c o s p  cos p = 1. 

i.e. 

The condition ( 5 . 6 ~ )  is identically fulfilled, regardless of p a .  
The relation (5.8) means that m' and p r  are parallel. As already stated, the 

transformation R(m) rotates tl -+ t ' I l ,  so that the t:' axis points in the direction of mi. 
According to (5.8), p r  must also have the same direction in T3, The Lorentz boost is 
then performed with respect to the direction of t ; .  Instead of considering the whole 
six-dimensional space-time, it is enough, due to equation (5.8), to consider only a 
four-dimensional Minkowski subspace M4. The latter is the direct sum of three- 
dimensional Euclidean space E3 and one-dimensional time, defined by the direction m' 
which is unique for all 6-vectors observable to a given observer. In other words, 
equation (5.8) implies that all 6-vectors p",  which are physically accessible (i.e. 
measurable) to a given observer, are situated on a four-dimensional Minkowski sheet 
embedded in M6. All other possible 6-vectors, not lying on M4, are not directly 
accessible to a subluminal observer on M4, nevertheless, they are detectable by a 
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superluminal observer whose Minkowski space-time Mh is 'orthogonal' to M4, as will 
soon be clear. 

First, let us apply the condition (5.8) top'" = Lab(v)pb,  where Lab(v)  isgiven by (4.5) 
and where p a  = ( p i ,  p')  = ( E r ,  p ' )  is a generic 6-vector, for instance energy-momentum. 
We obtain the 'contracted' subluminal transformations 

E ' =  y , ( E  + vnsps) E = p 0  

p" = - y u n ' E + p r - A v 2 n r n , p s  vn, = v,  = - v s .  (5.9) 

This is exactly the well known general transformation in M4. 
If we apply m $r = p o  and m "p = p t0  to p f a  = L a b  ( w ) p  b, where L a b  ( w )  is given by 

(4.8), we obtain the contracted superluminal transformations as considered respectively 
from 

(i) the viewpoint of a subluminal observer S 

P'  = Yw(E + wnsp') 
E" = p r  - ywwnrE - Bw2nrnspS (5.10) 

(ii) the viewpoint of a superluminal observer S' 

p t r  = E ' +  Bw2mrm,Es - ywwpm' 

E ' =  y , ( p -  wESm,) .  (5.1 1) 

Analogously, we can also contract the complex superluminal transformations (4.10) by 
imposing m'E, = E .  We obtain 

E ' =  - i y , (E  + vp'n,) 

p" = -i(-y,vn'E+p' -Av2nrn,p") .  (5.12) 

If n' = (1, 0,O) these last equations (5.12) are identical to the Recami-Mignani (1974) 
superluminal transformations in four dimensions. 

By assuming that a subluminal observer S can observe only those time vectors p i  
which are parallel to a certain time direction m ', and that a superluminal observer S' can 
observe only those time vectors p" which are parallel to a certain time direction m" in 
S', it follows that the observable events of S are not the same as the observable events of 
S'. In special relativity there are two classes of observable events: {P}  on M4 observed 
by a subluminal observer S and {P'} on M i  observed by a superluminal observer S'. 

This result can also be expressed by saying that there is no such four-dimensional 
subspace M4 c M6 and no real linear four-dimensional transformation which induces 
the change of a 4-vector sign x F x F  + - x F x , .  Only complex transformations do this job. 
This is the physical background of the imaginary unit i entering the superluminal 
transformations in M4. Other workers have closely approached this interpretation, 
namely that the factor i makes some quantities unobservable (Corben 1976). The 
papers by Recami and Maccarrone (1980) and by Caldirola et a1 (1980) in which the 
authors essentially obtain the result that a superluminal transformation transforms a 
sphere into a hyperbola can be understood in the following way: a cross section of a 
suitable six-dimensional object (i) with M4 is a sphere, (ii) with M i  is a hyperboloid. 
This difference in cross sections results from the fact that (a )  M4 and M i  are orthogonal 
(in the six-space M6) to each other, and ( b )  M6 is non-compact. Similarly two suitable 
orthogonal cross sections of a cone by plane give a circle and a hyperbola, respectively. 
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Occurrence of imaginary units when passing from a subluminal to a superluminal 
frame in M4 is equivalent to the assertion that in non-compact M6 superluminal (i.e. the 
quadratic form sign changing) transformations are real but the observable spaces M4 
and M >  are orthogonal to each other. 

6. General linear non-orthogonal covariance transformations 

I have always been fascinated with the idea (PavSiE 1979a, b, 1980, PavSiT: and Recami 
1977) why to consider as covariance transformations only those orthogonal trans- 
formations which preserve the length of a vector. Why not consider (in special 
relativity) all possible linear transformations, at least as a theoretical possibility to be 
explored? A superluminal transformation which changes ds2 + -ds2 is an example of 
such a more general transformation. 

Let us consider the transformation 

X I ’ *  = a’*,x” (6.1) 

where the constant elements upv  are not restricted by any constraint. For the moment I 
do not specify the metric or the dimension of space. Let an object 0 be specified by the 
set of events {E,} ( i  = 1, 2 , .  . . , N ) .  The transformation (6.1) transforms 

(i) in the passive sense 

O(S) + O(S’) 

O(S)  + O’(S) 

{E* (SI1 + {E, (SO} 

{E, (SI1 .+ {E:  ( S ) }  
The notation O(S)  means that 0 is observed from the frame S, etc. The transformed 
object 0‘ is equivalent to 0; the set of events {E,} is equivalent to the transformed set 
{E;} ,  The objects (0, 0’, 0“, . . ,} form an equivalence class of objects which all 
transform into each other by a covariance transformation. For further details see PavSiE 
(1980). 

Two equivalent objects O1 and O2 can be specified, in a given frame S,  by two 
different state matrices byv and b?,, specifying their respective states within the 
equivalence class. For instance, if the objects have different orientations, then by, and 
bg, specify their orientation states; if they have different velocities, then the state 
matrices specify their velocity states, i.e. their ‘orientations’ in space-time, etc. 

Though the coordinates x p  change according to (6. l), we can introduce the proper 
coordinates 

5” = b * j W  (6.2) 

{ x : } + { x :  = a”yxz”} 

{xr}+{xi” = a-’”yx;}. 

(ii) and in the active sense 

which are invariant under any covariance transformation (6.1): 

5’” = 5”. (6.3) 

Then from (6.1), (6.2) and (6.3) it follows that 

JWv.  (6.4) 

Further examinations will eventually show whether this extended group has any 
relation (PavSiE 1979b, 1980) with some presently observed (or not yet observed) 
objects and internal symmetries like colour, flavour, etc, which at the moment are 

b’”, = a-l” 
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treated only at the formal level with gauge theories, without any deeper (e.g. space- 
time) understanding of them. In the present paper I shall restrict myself only to the case 
of the dilatation and apply it to bradyons and tachyons. 

7. A special case: the imaginary dilatation and its relation to the superluminal 
transformations 

The action of the dilatation on the coordinates x a  is defined by 

x r a  = Dabxb = px"  (7.1) 

where we have represented the dilatation by 

(7.2) 

Two equivalent objects 0, and 02, which can be mapped into each other (PavSiE 1980) 
by a dilatation Dab, can be specified, in a given frame S,  by two different dilatational 
state matrices or simply scales and c$, respectively. These are special cases of the 
state matrix of the previous section. Instead of the proper coordinates e", which are 
invariant under any covariance transformation, it is now more convenient to define the 
coordinates 

q a  = CabXb = K X a  (7.3) 

v'a = (7.4) 

which are invariant only under dilatations (7.1): 

In equation (7.3), the scale is represented by the matrix 

From (7.1), (7.3) and (7.4) it then follows that 

Ctab = D-IcbCac or K ' =  p - l ~ .  

Let the quadratic form in the coordinates T~ be 

(7.6) 

dU2E(Sab d v "  d v b = d q a  dva (7.7) 

where (Sab is  given by equation (3.3). Let 2 a b  be a homogeneous transformation, with 
det 2 a b  = 1, which preserves the quadratic form (7.7) 

(7.8) b v r a  = 2"bT 

and consequently satisfies 

T a b 2 a c  = abC. 

The invariance of the quadratic form (7.7) reads 

du" = du'. 

(7.9) 

(7.10) 
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If K is constant, then from (7.3) and (7.10) it follows that 

da"  = C'"bC'2 dxtb dx', = K" dxta  dx& 

= K' dx" dx, = Ca&aC d x b  dx, = da2.  (7.11) 

Bearing in mind (7.1) and (7.6) we see that equation (7.11) is equivalent to 

dx', dx', = D"bD2 d x b  dx, = p2  dx" dx,. (7.12) 

In the present paper we are interested in two special cases 

(7.13a, b )  

where 8; is the unit 6 X 6 matrix. The case ( 7 . 1 3 ~ )  implies dst2 = ds'. The trans- 
formation 2 " b  is then a subluminal transformation. The case (7.13b) implies ds'' = 
-ds2; 2 " b  is then a superhminal transformation. 

Let us find particular representationsof Dab for the cases ( 7 . 1 3 ~ )  and (7.13b). In the 
subluminal case Dab can be represented by the unit 6 X 6 matrix (d 9. In the super- 
luminal case Dab can be represented by the diagonal matrix Dab = ($ s), Dab = D,b. 
Equivalently, it can be represented by the non-diagonal real matrix Dab = (f b), 
D/=--D,~. Let us choose C a b  =($ for a bradyon. Then, according to (7.61, 
C a b  = (h  :) for a tachyon in the diagonal representation and C a b  = (f i) in the non- 
diagonal representation. 

The relation (7.8) can be written in terms of the usual coordinates 

X ' a  = L a b X b  ( 7 . 8 ~ )  

where using (7.3) we obtain 

From (7.6),  (7.9) and (7.14) it follows that 

LabLa' = D "&a' (7.15) 

which embraces both the subluminal and the superluminal case, depending on the type 
of Dab given in equations ( 7 . 1 3 ~ )  and (7.13b).  

From the above considerations it follows that both subluminal and superluminal 
transformations can be written by the same matrix when expressed in the dilatation 
invariant coordinates 

6 is + A v 2 m  'mS y p m  'n, 
z u b  = ( 

- y,vnrms S', - Av'n'n, 
(7.16) 

where A = y:/(l+ yy) and yy = (1 - v2)-l". It has det 2 " b  = 1 and satisfies (7.9). The 
parameters of the transformation are the time unit vector mi, the space unit vector n' 
and 

(7.17) 

where dq  = (dq dq  r )"2 ,  d7 = (dT' d7,)'". Equation (7.17) can be obtained from 
d q t a  = 2 ' b  d q b  by imposing dq '=  0 and d r ' =  0, respectively. 

V = dq/dT1drl,=O = dT/dq1d7'=0 

Let us choose Cab = (i p). If we insert into equation (7.14) 
(i) C r a b  = (6 ?), then L a b  of equations ( 7 . 8 ~ )  and (7.14) becomes the subluminal 

transformationlab(v) of equation (4.51, 
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(ii) C t a b  = (p i), then L a b  becomes the real superlumina1 transformation L a b ( W )  of 
equation (4.8) with w = l / v  = I/, consistent with the definition of v in equation (7.17), 

(iii) C I a b  = (6 T), then L a b  becomes the complex superluminal transformation 
L * a b ( ~ )  of equation (4.10). 

Instead of treating bradyons and tachyons and the transformations between them 
separately, we can always use relation (7.8) and the transformation matrix (7.16), 
bearing in mind suitable scales C a b  and C’ab. When we wish to transform T~ and 2 a b  

back to x a  and L a b ,  we must apply equations (7.3) and (7.14). So we can reproduce all 
three types of transformations (4.5), (4.8) and (4.10), the special cases of which are 
(4.5a), ( 4 . 8 ~ )  and ( 4 . 1 0 ~ ) .  

8. Conclusion 

In the present paper I have written an explicit homogeneous transformation matrix 
which satisfies the condition that the world line O(0’)  representing the spatial origin of 
a frame S ( S ’ )  has the same time direction in both S and S ’ ;  the time directions of 0 and 
0’, as measured in one frame, are not necessarily the same. Since an observer perceives 
only one-dimensional time, the six-dimensional equations have been contracted into 
four-dimensional equations. All equations of the usual four-dimensional relativity can 
be recovered, if we assume that only those 6-vectors are observable which in three- 
dimensional time are parallel to a certain time direction m defining a Minkowski space 
M4. All other 6-vectors are not observable for the class of (subluminal) observers on 
M4. By assuming the complete symmetry between subluminal and superluminal 
observers and the corresponding laws, we came to the result that the Minkowski space 
M i  of a superluminal observer S’  is ‘orthogonal’ to the Minkowski space M4 of a 
corresponding subluminal observer S.  Therefore, it is meaningless to speak about real 
superluminal transformations in M4,  and this reflects itself in the fact that these 
transformations are necessarily complex. Those coordinates (e.g. t’ and x ’) which 
remain real span the cross section M3 n MI, which is common both for S and SI, whilst 
other coordinates which become imaginary under the transformation describe the 
events which are not commonly observed by S and S ’ .  

Next, I have established a unified formalism both for subluminal and superluminal 
transformations. The essence is the observation that an extended bradyon at rest and 
an infinite-speed tachyon are equivalent (six-dimensional) objects, distinguished by the 
orientations of their space-like and time-like axes. This orientation is specified by the 
quantity C a b  which has been called scale. By ascribing to bradyons and tachyons 
suitable scales both types of objects and transformations can be described by the same 
equations in terms of the dilatation invariant coordinates 7‘. When we go back to the 
usual coordinates x a ,  this description splits into two separate cases, a subluminal and a 
superluminal one. In six dimensions the dilatation Dab, a special case of superluminal 
transformations, can be represented either by a diagonal imaginary matrix or a 
non-diagonal real matrix. In fact, the matrix (h 4) can be transformed into the matrix 
(f d) by a unitary transformation. Both representations of the dilatation and the 
tachyonic scale, the diagonal and the non-diagonal one, give identical kinematical 
results. In future it will also be necessary to explore the dynamics, especially the 
interactions between bradyons and tachyons. It is reasonable to hope that the unified 
formalism presented here will greatly facilitate this task. 
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